a2 United States Patent

Davis et al.

US009323592B2

US 9,323,592 B2
Apr. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

ENSURING THREAD AFFINITY FOR
INTERPROCESS COMMUNICATION IN A
MANAGED CODE ENVIRONMENT

Inventors: Jackson M. Davis, Bothell, WA (US);
John A. Shepard, Seattle, WA (US)

Assignee: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1044 days.

Appl. No.: 12/719,342

Filed: Mar. 8, 2010
Prior Publication Data
US 2010/0162266 Al Jun. 24, 2010

Related U.S. Application Data

Continuation of application No. 11/388,809, filed on
Mar. 23, 2006, now Pat. No. 7,676,811.

Int. CI.

GOG6F 3/00 (2006.01)

GOGF 9/44 (2006.01)

GOG6F 9/46 (2006.01)

GOGF 13/00 (2006.01)

GOG6F 9/54 (2006.01)

U.S. CL

CPC ..o GO6F 9/547 (2013.01); GOG6F 9/546
(2013.01)

Field of Classification Search

CPC oo GOGF 9/547, GOGF 9/546

USPC e 719/315

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,247,676 A 9/1993 Ozur et al.
5,463,625 A 10/1995 Yasrebi
5,802,371 A 9/1998 Meier
6,081,906 A 6/2000 Nishizawa et al.
6,195,682 Bl 2/2001 Ho et al.
6,226,689 Bl 5/2001 Shah et al.
6,477,586 B1* 11/2002 Achensonetal. 719/330
6,708,223 Bl 3/2004 Wang et al.
6,856,993 B1* 2/2005 Verma et al.
6,901,596 Bl 5/2005 Galloway
7,213,236 B2 5/2007 Gibbons
(Continued)
OTHER PUBLICATIONS

Barnett, “ NET Remoting Authentication and Authorization Sample
Part 1, www.msdn.microsoft.com-en-us-library-
ms973909(printer).aspx, accessed Jan. 2004.

(Continued)

Primary Examiner — Timothy A Mudrick
(74) Attorney, Agent, or Firm — Kate Drakos;
Sullivan; Micky Minhas

(57) ABSTRACT

A remote procedure call channel for interprocess communi-
cation in a managed code environment ensures thread-affinity
on both sides of an interprocess communication. Using the
channel, calls from a first process to a second process are
guaranteed to run on a same thread in a target process. Fur-
thermore, calls from the second process back to the first
process will also always execute on the same thread. An
interprocess communication manager that allows thread
affinity and reentrancy is able to correctly keep track of the
logical thread of execution so calls are not blocked in unman-
aged hosts. Furthermore, both unmanaged and managed hosts
are able to make use of transparent remote call functionality
provided by an interprocess communication manager for the
managed code environment.

28 Claims, 2 Drawing Sheets

Kevin

Process 1
120

Process 2
130

Client side interprocess
communication objects

| Sever side interprocess

‘communication objects
135

7

Rs)“uls procedure™ ="

call channel for
Interprocess
cammunication
110

US 9,323,592 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,287,254 B2 10/2007 Miller et al.

7,331,047 B2 2/2008 Chu etal.

7,458,072 B2 11/2008 Moorthy et al.

7,676,811 B2 3/2010 Davis et al.

8,065,690 B2 11/2011 Gokhale et al.
2003/0097395 Al* 5/2003 Petersen 709/102
2005/0108251 Al 5/2005 Hunt
2005/0144171 Al* 6/2005 Robinson 707/9
2006/0150197 Al 7/2006 Werner

OTHER PUBLICATIONS

Chang et al., “MRPC: A high performance RPC system for MPMD
parallel computing”, Software—Practice & Experience, Jan. 1999,
29(1), 1-18.
Liang, “Understanding the COM Single-Threaded Apartment Part
17, www.codeproject.com-KB-COM-CCOMThread.aspx, accessed
Jan. 6, 2005.

Shah et al., “Design and implementation of efficient communication
abstractions on the virtual interface architecture: stream sockets and
RPC experience”, Software: Practice and Experience, Jun. 8, 2001,
31(11), 1043-1065.

Zeldovich, Nickolai et al., “Multiprocessor Support for Event-Driven
Programs”, USENIX 2003 Annual Technical Conference, General
Track—Paper, 2003, online at: http://static.usenix.org/events/
usenix03/tech/full__papers/zeldovich/zeldovich__html/, 21 pages.
Johnson, Chris D. et al., “Concurrency Utilities for Java EE”, Early
Draft Preview, Apr. 4, 2006, online at: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.367.8399&rep=repl &type=pdf, 63
pgs.

U.S. Appl. No. 11/388,809, Office Action mailed Jun. 9, 2009, 19

pgs.
U.S. Appl. No. 11/388,809, Amendment and Response filed Sep. 9,
2009, 12 pgs.

U.S. Appl. No. 11/388,809, Notice of Allowance mailed Dec. 3,
2009, 6 pgs.

* cited by examiner

U.S. Patent Apr. 26,2016 Sheet 1 of 2 US 9,323,592 B2

Process 1 Process 2
120 | 130

Client side interprocess Sever side interprocess
communication objects communication objects

125 135

 FormatSink (.Net)

_ FormatSink (:Net)

Remote procedure
call channel for
interprocess
communication
110

US 9,323,592 B2

Sheet 2 of 2

Apr. 26,2016

U.S. Patent

Debugger
205

]
|
|
|
|
1
1
1
|
{
i
|
|
|
!
i
|
|
|
|
I
L

4. Suspend the addin proce
8. Continue the addin process

2]
o

COM Channel
0

7. Repaint Ul

2. Call to addin

t
52_
ad t--{ T e
H_2 1 | _ |-
o £
2 c
@ ©
= o s
g |5 &
[- %
as b] }— mm e
G
s 2
o 5
= c
o°
o
o
=)
@
[}
3 8
=
[=) el
S oo ___
&
J&
Ol

US 9,323,592 B2

1
ENSURING THREAD AFFINITY FOR
INTERPROCESS COMMUNICATION IN A
MANAGED CODE ENVIRONMENT

CROSS REFERENCE TO RELATED
APPLICATIONS

This is a continuation of U.S. patent application Ser. No.
11/388,809, filed Mar. 23, 2006, now issued U.S. Pat. No.
7,676,811, and entitled “Ensuring Thread Affinity for Inter-
process Communications in a Managed Code Environment.”

BACKGROUND

Itis commonplace to extend the functionality of an existing
application such as MICROSOFT EXCEL® by developing
an “add-in”. An add-in is typically not written by the creators
of'the host application but by third party developers that want
to extend the functionality of the host application. An add-in
can be created with development tools such as VISUAL STU-
DIO.NET 2005® and VISUAL STUDIO 2005 TOOLS FOR
APPLICATIONS®. An add-in is a component that a host
application such as MICROSOFT EXCEL® loads when it is
needed such as when the host application starts up or when a
particular document is loaded by the host application.

A host application may choose to execute an add-in in a
separate process for several reasons including process stabil-
ity, platform version resilience, or special debugging sce-
narios. Running an add-in in a separate process requires a
mechanism for the host application and the add-in to commu-
nicate across process boundaries. There exist several Remote
Procedure Call (RPC) technologies a host may use for this
communication. However, there are several problems specific
to the host/add-in model that require special considerations
that most RPC technologies do not consider. The most
notable of these problems is threading model of the host and
of the add-in.

MICROSOFT®.NET is an example of a set of technolo-
gies that provide a managed code environment. NET man-
aged code has access to all the services that the Common
Language Runtime (CLR) technology makes available, such
as cross-language integration, security and versioning sup-
port, and garbage collection. Code that does not operate
within a runtime managed framework such as CLR is called
unmanaged code.

In the NET environment, the standard RPC technology is
NET Remoting. .NET Remoting provides an interprocess
communication manager for managed code. NET Remoting
makes remote procedure calls transparent, i.e., invisible, to
the caller/callee. That is, a first object may call a method on a
second object which exists in a separate process without the
first object knowing that the call is remote. NET Remoting
intercepts the call to the second object via a proxy and trans-
ports that call to the other process. However, in the current
NET Remoting implementation each call across process
executes on a different thread in the target process. This can
cause many problems for add-ins which normally run on a
specific thread within the host application. If the add-in uses
a technology which expects thread affinity, that technology
will fail when the add-in is moved to an external process and
called from multiple remoting threads. An example of such a
technology is MICROSOFT WINDOWS® Timers.

A related problem occurs in the multitudes of unmanaged
applications written using, for example, MICROSOFT’s®
Common Object Model (COM) technology. COM technolo-
gies provide, among other things, an interprocess communi-
cation manager for unmanaged code. In COM applications, it

10

15

20

25

30

35

40

45

50

55

60

65

2

is common practice for a thread within the application to be
marked as a “Single-Threaded Apartment”. Any call into
objects within this apartment must first be marshaled onto the
apartment’s thread (i.e. transferred to execute on the thread
contained within the apartment). COM keeps track of the
incoming and out-going calls within the apartment. The col-
lection of these calls is called the logical thread. When a new
call enters the apartment, this call is called the “top-level call”
of'the logical thread. If a call leaves the apartment by calling
an object outside the apartment boundaries (either cross-
process or cross apartment) incoming top-level calls will be
blocked by COM. If the out-going call results in a new call
coming in, that call is part of the current logical thread and is
allowed to enter the apartment. Only calls which are part of
the current logical thread are allowed to re-enter the apart-
ment. This means the current .NET Remoting technology is
unacceptable for communication between a COM host and its
add-ins. If the com host was to make a call to an add-in using
NET Remoting, and that call executed on a different thread in
the add-in, calls back to the host would appear to be a different
top-level call to COM and would be rejected.

SUMMARY

In consideration of the above-identified shortcomings of
the art, the present invention ensures thread affinity for inter-
process communication in a managed code environment. It
provides a remote procedure call channel for interprocess
communication in a managed code environment which
ensures thread-affinity on both sides of an interprocess com-
munication. Using the channel, calls from a first process to a
second process, such as from a host to an add-in, are guaran-
teed to run on a same thread in a target process. Furthermore,
calls from the add-in to the host will also always execute on
the same thread. An interprocess communication manager
that supports thread affinity and reentrancy is able to correctly
keep track of the logical thread of execution so calls are not
blocked in unmanaged hosts. Furthermore, both unmanaged
and managed hosts are able to make use of transparent remote
call functionality provided by an interprocess communication
manager for the managed code environment. Other advan-
tages and features of the invention are described below.

BRIEF DESCRIPTION OF THE DRAWINGS

The systems and methods for ensuring thread affinity for
interprocess communication in a managed code environment
in accordance with the present invention are further described
with reference to the accompanying drawings in which:

FIG. 1 provides a diagram of a remote procedure call
channel for interprocess communication which uses an inter-
process communication mechanism that allow thread affinity
and reentrancy.

FIG. 2 illustrates an exemplary advantageous use of the
invention in which a host 202 is painting while an add-in 204
is being debugged.

DETAILED DESCRIPTION

Certain specific details are set forth in the following
description and figures to provide a thorough understanding
of various embodiments of the invention. Certain well-known
details often associated with computing and software tech-
nology are not set forth in the following disclosure, however,
to avoid unnecessarily obscuring the various embodiments of
the invention. Further, those of ordinary skill in the relevant
art will understand that they can practice other embodiments

US 9,323,592 B2

3

of the invention without one or more of the details described
below. Finally, while various methods are described with
reference to steps and sequences in the following disclosure,
the description as such is for providing a clear implementa-
tion of embodiments of the invention, and the steps and
sequences of steps should not be taken as required to practice
this invention.

In one embodiment, interprocess communication in a man-
aged code environment can be implemented using .NET
Remoting technology. While the specific embodiment
described herein is explained with reference to NET Remot-
ing, the invention is not limited to such embodiments. Refer-
ring to FIG. 1, NET Remoting is architected around the
concept of a channel 110. A channel comprises one or more
sinks which each have a specific job. Each sink takes a cross-
process message, processes it in some way, and hands it to the
next sink. Thus, a message may travel from the object making
a remote call 121 to the transparent proxy 126, then to a
FormatSink 127, then to a StackBuilderSink 128. This con-
tinues until the transport sink 129 is reached. The transport
sink 129 is responsible for actually sending the constructed
message to the target process 130. The existing .NET Remot-
ing sinks, e.g. 129 send this message using network protocols
such as HTTP and TCP or using Microsoft Windows Named
Pipes. However, the receiving end of these transport sinks use
a different thread-pool thread for incoming messages, result-
ing in the problems described above. Thus, in one embodi-
ment, custom sinks 129,139 can plug into channel 110 at the
incoming messages thread, and transport a message across
process boundaries with thread affinity.

Thus, .NET Remoting provides a framework that allows
objects to interact with one another across process bound-
aries. The framework may additionally provide a number of
services, including activation and lifetime support. Format-
ters such as 127 and 137 are used for encoding and decoding
the messages before they are transported by the channel.
Applications can use binary encoding where performance is
critical, or XML encoding where interoperability with other
remoting frameworks is essential. XML encoding generally
uses the SOAP protocol in transporting messages from one
process 120 to the other 130. It will be understood that refer-
ences herein to industry standard specifications such as XML
and SOAP refer to any version of such specifications pres-
ently in use or later developed. Remoting was designed with
security in mind, and a number of hooks are provided that
allow channel sinks to gain access to the messages and seri-
alized stream before the stream is transported over the chan-
nel.

Proxy objects such as 126 are created when a originating
object 121 activates a remote object 131. The proxy object
126 acts as a representative of the remote object 131 and
ensures that all calls made on the proxy 126 are forwarded to
the correct remote object instance. When a originating object
121 activates a remote object 131, the framework creates a
local instance of the class TransparentProxy that contains a
list of all classes, as well as interface methods of the remote
object. Since the TransparentProxy class is registered with the
CLR when it gets created, all method calls on the proxy are
intercepted by the runtime. Here the call is examined to deter-
mine if it is a valid method of the remote object and if an
instance of the remote object resides in the same application
domain as the proxy. If this is true, a simple method call is
routed to the actual object. If the object is in a different
application domain, the call parameters on the stack are pack-
aged into an IMessage object and forwarded to a RealProxy
class by calling its Invoke method. This class (or rather an
internal implementation of it) is responsible for forwarding

10

15

20

25

30

35

40

45

50

55

60

65

4

messages to the remote object. Both the TransparentProxy
and RealProxy classes are created under the covers when a
remote object is activated, but only the TransparentProxy is
returned to the client.

Channels are used to transport messages to and from
remote objects such as 131. When a originating object 121
calls amethod on a remote object 131, the parameters, as well
as other details related to the call, are transported through the
channel 110 to the remote object 131. Any results from the
call are returned back to the originating object 121 in the same
way. An originating object 121 can select any of the channels
registered on the “server” to communicate with the remote
object 131, thereby allowing developers the freedom to select
the channels that best suit their needs. It is also possible to
customize any existing channel or build new ones that use
different communication protocols. In one embodiment of the
invention, a new .NET Remoting channel is built that operates
using an interprocess communication mechanism that allows
thread affinity and reentrancy 140, such as COM RPC.

In NET Remoting, custom channels can be supported
using channel services, which are pluggable using an inter-
face called IChannel. The following provides sample code to
load NET channel services, for an exemplary new http or tcp
channel, which can be extended by those of'skill to a channel
associated with any communications protocol:

Sample Code to Load .NET Channel Services:

public class myRemotingObj

{
HttpChannel httpChannel;
TepChannel tepChannel;
public void myRemotingMethod()

httpChannel new HttpChannel();

tepChannel new TepChannel();
ChannelServices.RegisterChannel(httpChannel);

// Register the HTTP Channel
ChannelServices.RegisterChannel(tcpChannel);

// Register the TCP Channel

¥
¥

All NET Remoting channels derive from IChannel and
implement either IChannelReceiver or IChannelSender,
depending on the purpose of the channel. Most channels
implement both the receiver and sender interfaces to enable
them to communicate in either direction. When a originating
object 121 calls a method on a proxy 126, the call is inter-
cepted by the remoting framework and changed into a mes-
sage that is forwarded to the RealProxy class (or rather, an
instance of a class that implements RealProxy). The Real-
Proxy forwards the message to the channel sink chain for
processing.

This first sink in the chain can be a formatter sink 127 that
serializes the message into a stream of bytes. The message is
then passed from one channel sink to the next until it reaches
the transport sink 129 at the end of the chain. The transport
sink 129 is responsible for establishing a connection with the
transport sink 139 on the server side and sending a byte
stream to the server. The transport sink 139 on the server then
forwards the byte stream through the sink chain on the server
side 135 until it reaches the formatter sink 137, at which point
the message is deserialized from its point of dispatch to the
remote object itself.

Managed code interprocess communication channels, such
as NET Remoting, can be employed in a variety of scenarios.
For example, NET Remoting objects can be exposed as a
Web Service by hosting them in IIS. It is also possible to call

US 9,323,592 B2

5

Unmanaged Classic COM components through COM
Interop Services. When the NET Remoting client object
creates an instance of a COM object, the object is exposed
through a runtime callable wrapper (RCW) that acts as a
proxy for the real unmanaged object. These wrappers appear
to be just like any other managed class to the .NET client, but
in actuality they just marshal calls between managed (NET)
and unmanaged (COM) code.

Similarly a NET Remoting server object can be exposed to
classic COM clients. When a COM client creates an instance
of the .NET object, the object is exposed through a COM
callable wrapper (CCW) that acts as a proxy for the real
managed object.

Referring again to FIG. 1, in one embodiment, a remote
procedure call channel 110 is provided comprising client side
objects 125 and server side objects 135. The remote proce-
dure call channel 110 may be a custom .NET Remoting
channel. The channel 110 uses an interprocess communica-
tion mechanism that allows thread affinity and reentrancy
140. One such communication mechanism is COM RPC, an
existing interprocess communication manager for unman-
aged code.

In FIG. 1, messages flow from the object making a remote
call, referred to herein as the originating object 121, down the
stack through client side interprocess communication objects
125 to the transport sink 129. Transport sink 129 is a client
side managed code interprocess communication object, as are
objects 126,127, and 128. Objects 137 and 138 are server side
managed code interprocess communication objects.

A thread-affinitized COM object 139 receives a message
from 129 via 140 and sends it up the stack, through server side
interprocess communication objects 135 to the destination
object 131. A call from an originating object 121 in Process 1
120to adestination object 131 in Process 2 130 will always be
received by thread affinitized object 139. “Thread affinitized”
is used here as it is understood in the art, that is, a thread
affinitized object cannot be communicated with via some
other thread than that which the thread affinitized object itself
uses for communications. A thread affinitized object is often
also a single-threaded object.

Process 120 may be a host process and process 130 may be
an add-in process. The .NET Remoting channel 110 in FIG. 1
ensures thread-affinity on both sides of the interprocess com-
munication between host 120 and add-in 130. Calls from the
host 120 to the add-in 130 are guaranteed to run on the same
thread in the target process 130. Furthermore, calls in the
other direction (from the add-in 130 to the host 120) will also
always execute on the same thread if the add-in communi-
cates back to the host on a channel that implements the inven-
tion. Thus, technologies such as WINDOWS® Timers work
as expected regardless of whether an add-in is running in a
separate process from its host. Interprocess communications
mechanisms such as COM are able to correctly keep track of
the logical thread of execution so calls are not blocked in
unmanaged hosts, thereby supporting reentrancy. Further-
more, both unmanaged and managed hosts are able to make
use of .NET Remoting’s transparent remote call functional-
ity.

In one embodiment, a piece of computer software, i.e. a
computer program that implements a custom remote proce-
dure call channel for interprocess communication 110 can
plug into a managed code interprocess communication chan-
nel such as the .NET Remoting technology of 125,135 to
guarantee thread-affinity on each side of a process boundary.
Cross-process calls (the noun “call” and the noun “message”
are used interchangeably herein) between managed code
interprocess communication objects such as NET objects

30

40

45

6

121 and 131 work transparently regardless of the threading
model of the host 120 or add-in 130. Furthermore, add-ins
130 are able to work with the host’s 120 .NET object model
without directly relying on an external unmanaged cross-
process communication technology such as COM RPC.
COM RPC would require a substantially different program-
ming model when the add-in 131 is running in process 120
than when the add-in 131 is running outside of process 120.
Thus a combination of technologies can be used to attain the
goals of cross-process object thread-affinity while remaining
transparent to .NET technologies.

The custom .NET Remoting channel 110 uses a thread-
affinitized COM object 139 for the actual transportation of
messages between the two processes 120, 130. Existing .NET
Remoting technology 129 converts a message to a destination
object 131 into a collection of bits that describe the message.
The collection of bits can be either SOAP (Simple Object
Access Protocol) or NET Remoting’s binary format. Rather
than transporting this message to process 130 using a network
protocol such as HT'TP or TCP (as .NET Remoting currently
does), the message is passed across process boundaries to a
thread affinitized COM object 139 in the other process 130.
This COM object 139 gives the NET Remoting message to
the Remoting infrastructure 135 on the server side 130 which
then dispatches the message to the appropriate object 131.

Since thread affinitized COM object 139 can only receive
messages on one thread, the incoming cross-process message
executes on the one and only thread in the apartment corre-
sponding to the thread of object 139. This remoting channel
110 effectively gives thread affinity to the object 139 called
across process. Furthermore, since the outgoing message
appears to be a standard COM cross-process call, COM’s
logical thread system remains intact and unmanaged COM
hosts (in one embodiment originating object 121 may be an
unmanaged host object) are able to use .NET Remoting
objects 125 instead of using COM RPC 140 directly.

One advantage of the COM RPC channel over the existing
channels is the ability for a host to install a message filter into
a single threaded apartment to selectively control re-entrancy.
Hosts using the COM RPC channel have the ability to pump
windows messages while waiting for a call to return from the
add-in. This allows the host to paint its user interface even
while waiting for a call to the add-in to return. An example of
this is illustrated in FIG. 2. This works even if the add-in
process is being debugged and has been suspended by the
debugger. The existing remoting channels do not have sup-
port for this scenario without exclusively using asynchronous
calls. The state of the host process’s user interface is very
important to add-in developers because information about it
may not be available in the debugger. A good example of such
information in the user interface is the contents of cells in a
MICROSOFT EXCEL® worksheet. Add-in developers have
a much easier time debugging MICROSOFT EXCEL® add-
ins if they are able to see the contents of the workbook while
debugging.

In one embodiment, a message filter is a COM object
which implements the IMessageFilter interface. COM RPC
provides various notifications to the message filter, allowing
the host to override some of the default behavior of COM.
One such notification is MessagePending. MessagePending
is sent when a call has exited the single threaded apartment
and a windows message is waiting to be processed by the
apartment’s message loop. An add-in host using the COM
RPC channel can register a message filter, and respond to
MessagePending by pumping WM_PAINT, thus updating its
user interface.

US 9,323,592 B2

7

FIG. 2 demonstrates the host 202 painting while an add-in
204 is being debugged. 1) The host 202 creates the message
filter 201. 2) The host 202 makes a call to the add-in 204 via
the COM RPC remoting channel 203. 3) The call is transmit-
ted to the add-in 204. 4) The debugger 205 suspends the
execution of the add-in 204 process. 5) At some later time
(while the debugger 205 still has the add-in 204 process
suspended) the operating system 200 decides it is time for the
host 202 to repaint its UL Since there is a call outside the
apartment, this message goes to the message filter 201 as
MessagePending. 6) The message filter 201 tells the host 202
to repaint its UL 7) The host 202 repaints. At some later time,
the debugger 205 allows the add-in 204 process to continue
execution.

In addition to the specific implementations explicitly set
forth herein, other aspects and implementations will be appar-
ent to those skilled in the art from consideration of the speci-
fication disclosed herein. It is intended that the specification
and illustrated implementations be considered as examples
only, with a true scope and spirit of the following claims.

What is claimed:

1. A computer-implemented method for enabling interpro-
cess communications and thread affinity, the computer-
implemented method comprising:

receiving by a first object executing on a first process in a

managed code computing environment, via an interpro-
cess communication mechanism executing on a thread
of the first process, an interprocess message from a
second object executing on a second process external to
aprocess boundary of said first process, wherein the first
process is associated with a channel and the second
process is associated with the channel, wherein the chan-
nel enables thread reentrancy; and

executing said interprocess message on said thread of said

first process, whereby cross-process thread affinity with
respect to the interprocess message is achieved.

2. The method of claim 1, further comprising exposing said
interprocess communication mechanism as a callable wrap-
per that acts as a proxy for a managed object.

3. The method of claim 2, wherein said interprocess com-
munication mechanism comprises an unmanaged object.

4. The method of claim 1, wherein said interprocess com-
munication mechanism comprises a thread affinitized object.

5. The method of claim 1, wherein said interprocess com-
munication mechanism communicates only on said thread of
said first process.

6. The method of claim 1, wherein said receiving of said
interprocess message occurs on said thread of said first pro-
cess.

7. The method of claim 1, wherein said interprocess com-
munication mechanism comprises a Component Object
Model object.

8. The method of claim 1, wherein receiving said interpro-
cess message comprises receiving a byte stream and convert-
ing said byte stream into said interprocess message.

9. The method of claim 1, wherein said interprocess com-
munication mechanism is able to correctly keep track of a
logical thread of executions such that messages are not
blocked.

10. A computer-implemented method for enabling inter-
process communications and thread affinity, the computer-
implemented method comprising:

receiving by a first object on a first process in a managed

code computing environment, via an interprocess com-
munication mechanism executing on a thread of the first
process, an interprocess message from a second object
executing on a second process external to a process

10

15

20

25

30

40

45

50

55

60

65

8

boundary of said first process, wherein the first process
is associated with a channel and the second process is
associated with the channel, wherein the channel
enables thread reentrancy;

sending said interprocess message to a destination objectin

said first process; and

ensuring that said interprocess message is executed on said

thread of said first process,

whereby cross-process thread affinity with respect to the

interprocess message is achieved.
11. The method of claim 10, further comprising exposing
said interprocess communication mechanism as a callable
wrapper that acts as a proxy for a managed object.
12. The method of claim 11, wherein said interprocess
communication mechanism comprises an unmanaged object.
13. The method of claim 10, wherein said interprocess
communication mechanism comprises a thread affinitized
object.
14. The method of claim 10, wherein said receiving of said
interprocess message occurs on said thread of said first pro-
cess.
15. The method of claim 10, wherein said interprocess
communication mechanism is able to correctly keep track of
a logical thread of executions such that messages are not
blocked.
16. A computer-implemented method for enabling inter-
process communications and thread reentrancy, the com-
puter-implemented method comprising:
receiving by a first object executing on a first process in a
managed code computing environment, via an interpro-
cess communication mechanism executing on a thread
of the first process, an interprocess message from a
second object executing on a second process external to
a process boundary of said process, wherein the first
process is associated with a channel and the second
process is associated with the channel, wherein said
interprocess communication mechanism is able to cor-
rectly keep track of a logical thread of executions, and
wherein the channel enables thread reentrancys;

determining whether said interprocess message is part of
said logical thread of executions;
when said interprocess message is part of said logical
thread of executions, ensuring that said interprocess
message is executed on said thread of said first process,

whereby reentrancy with respect to the interprocess mes-
sage is achieved.

17. The method of claim 16, further comprising exposing
said interprocess communication mechanism as a callable
wrapper that acts as a proxy for a managed object.

18. The method of claim 17, wherein said interprocess
communication mechanism comprises an unmanaged object.

19. The method of claim 16, wherein said interprocess
communication mechanism comprises a thread affinitized
object.

20. The method of claim 16, wherein said receiving of said
interprocess message occurs on said thread of said first pro-
cess.

21. A computer-implemented method for enabling inter-
process communications between objects in a managed code
environment that enables thread affinity and thread reen-
trancy of the objects in the managed code environment, the
computer-implemented method comprising:

receiving, by an interprocess communication object run-

ning in a managed code environment, a first message
from a first managed object executing on a first thread of
a first process, wherein the first managed object is
located in the managed code environment;

US 9,323,592 B2
9

sending the first message to a second managed object
executing on a second process via an interprocess com-
munication mechanism;
receiving a second message from the second managed
object via the interprocess communication mechanism; 5

in response to receiving the second message, maintaining
thread reentrancy of the first managed object by re-
entering code of the first managed object on the first
thread of the first process.

22. The method of claim 21, wherein the interprocess com- 10
munication mechanism includes one or more interprocess
communication objects.

23. The method of claim 22, wherein the one or more
interprocess communication objects includes a proxy object.

24. The method of claim 22, wherein the interprocess com- 15
munication mechanism uses a thread-pool.

25. The method of claim 21, wherein one or more param-
eters are packaged into the message.

26. The method of claim 21, wherein the first message is a
managed object in the managed code environment. 20
27. The method of claim 25, wherein the first message is

serialized into a series of bytes.

28. The method of claim 21, further comprising, in
response to receiving the second message, maintaining thread
affinity of the first managed object. 25

#* #* #* #* #*

